八年级上册数学教学计划
光阴迅速,一眨眼就过去了,前方等待着我们的是新的机遇和挑战,一起对今后的学习做个计划吧。可是到底什么样的计划才是适合自己的呢?以下是小编为大家收集的八年级上册数学教学计划,仅供参考,希望能够帮助到大家。
八年级上册数学教学计划1一、学生基本情况
本学期我所带的两个班学生人数为:八(1)47人,八(2)46人,数学基础不是很好,尤其是八(1)班学生的成绩相对其他三个班有一定的差距,从上学期期末数学测试成绩可以看出。总的来看,两个班的学生经过七年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是有所欠缺,同时作答也比较粗心。在学生所学知识的掌握程度上,已经开始出现两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,在几何中,学生在推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点帮扶和教育对象,课堂作业、家庭作业,学生完成的质量也不是太好;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正错误(考试、作业后)的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
二、指导思想
以全日制义务教育《数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。
三、教材分析
本学期教学内容,共计五章,知识的前后联系分析如下: 第12章 平面直角坐标系
本章首先通过通俗易懂、形式多样的确定位置的显示背景,是学生认识到确定物体位置的重要性;然后让学生系统地学习平面直角坐标系的基础知识;最后,在平面直角坐标系中通过图形平移引起的对应点的坐标变化规律,然学生初步体会数形结合的思想。
本章的重点是平面直角坐标系的基础知识,难点是对平面直角坐标系上点的坐标有序性的理解,对同一平面直角坐标系中图形平移前、后点的坐标变化规律的理解。 第13章 一次函数
函数是中学数学的重要内容,是中学数学中一类重要数学模型,它不仅是后继学习数学的基础,同时在物理、化学等自然科学中有着广泛的应用。函数概念比较抽象,学生理解和掌握有一定的困难,因而教科书从展现大量实际情境入手,螺旋式上升对函数概念的理解。本章内容是函数知识的入门教学,是最基本的函数知识内容。教材从不同的侧面展现实际问题中的常量和变量、自变量和函数以及他们之间的相互转化、互相依存的关系让学生从生活实例中感受常量、变量和函数的基本概念;再通过对最基本的函数-----一次函数的图象、性质以及与方程、方程组、不等式的联系与对应关系的学习研究,初步掌握学习研究函数的基本方法,在感悟函数概念的同时,培养学生应用数学的意识与分析归纳能力。
本章的重点是函数的概念、三种表示方法以及一次函数的概念、图像与性质,能熟练地运用待定系数法确定函数解析式,能利用一次函数及其图象剞劂简单的实际问题,初步体会方程、不等式与函数的关系。
本章难点是对函数概念的理解,利用函数的图象解方程(组)和不等式,以及利用一次函数及其性质 解决简单的实际问题。
第14章 三角形中的边角关系 三角形是最简单的多边形,是研究其它图形的基础。本章是在学生已学过的一些三角形知识的基础上,
进一步系统地研究它的概念、分类、性质和应用。
本章的另一内容是形式逻辑训练的`开始,然学生学习:命题的概念与结构,命题的真假及公理、定理和证明的意义以及简单的证明。
本章的重点是三角形的边角关系,以及区分一个命题的题设和结论,综合法证明一个几何命题的方法与步骤。
本章难点是区分命题的条件和结论,简单反例的构造,一个几何命题综合法证明思路的分析和证明过程的规范表述。
第15章 全等三角形
全等三角形是研究平面几何图形的基础,本章是在前面学习的基础上进一步研究全等三角形的概念、性质、判定和应用,促进学生对几何知识的认识,发展几何证明的能力和解决实际问题能力。
本章的重点是全等三角形的判定方法由于全等三角形是研究图形中线段相等或角相等的基础,学生只有掌握了全等三角形的判定方法,并能灵活应用它们,才能学好后面知识。
本章难点是探索三角形全等的条件和运用它们进行说理,以及应用全等三角形解决实际问题。 第16章 轴对称图形与等腰三角形
轴对称是现实生活中广泛存在的一种现象,本章首先学习轴对称的基本性质,欣赏并体验轴对称,密切数学与现实之间的联系,认识、描述图形形状和位置关系,进而学习与轴对称有关的图形如等腰三角形、角等内容,研究它们的性质和判定以及应用,发展图形意识。
本章重点是轴对称的性质、线段的垂直平分线、角的平分线、等腰三角形的性质和判定。
本章难点是轴对称和轴对称图形的区别与联系;线段的垂直平分线、角的平分线尺规作法的正确性的证明;线段的垂直平分线、角的平分线、等腰三角形的性质和判定的综合应用。
四、本期教学任务
通过本期的学习,掌握平面直角坐标系,学习变量间的关系、让学生初步体会函数的概念、并且进一步探究一次函数三角形中的边角关系,以及命题与证明等几何知识全等三角形以及三角形全等的条件、直角三角形全等的特殊条件,研究其基本性质,促进学生对几何知识的认识,发展几何证明的能力。通过轴对称的基本性质的学习,欣赏并体验轴对称,要使学生认识平移、旋转、和中心对称的决定因素和本质,并用它来解决相关问题,设计图案。这是在知识与技能上。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有 ……此处隐藏17414个字……看到许多对称的现象,怎样认识轴对称与轴对称图形?十三章会告诉答案。
在中,我们可以用含有字母的式子表示实际问题中的数量关系,解决更多与数量关系有关的问题,加深对这个由具体到抽象的过程的认识。
我们知道数有整数和分式之分,式也有整式和分式之别。在这章中你将看到分数的影子。学习了分式,你会认识到它是我们研究数量关系并用来解决问题的重要工具。
三、教学措施
1、认真学习钻研新课标,掌握教材,编写好。
2、认真备课,争取充分掌握学生动态。
认真钻研大纲和教材,做好各章节的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。
3、认真上好每一堂课。
创设教学情境,激发学习兴趣,爱因斯曾经说过:激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
4、落实每一堂课后辅助,查漏补缺。
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生的合理化建议。
7、深化两极生的训导。
八年级是承上启下的非常关键的一年,学习习惯、学习方法的养成在此一举。因此,在教学中要密切注意学生的思想动态,及时引导,使好的更好,差的迎头赶上。尽可能多的抓学生,面广,量大,同时也要注意保质保量的完成教学任务。
希望各位教师能够认真阅读第一学期八年级数学上册教学计划,努力提高自己的教学水平。
八年级上册数学教学计划15一、内容和内容解析
(一)内容
直角三角形全等的判定:“斜边、直角边”.
(二)内容解析
本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.
教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.
基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用.
二、目标及目标解析
(一)目标
1.理解“斜边、直角边”能判定两个直角三角形全等.
2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.
(二)目标解析
1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.
三、教学问题诊断分析
由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质.例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等.
直角三角形的斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.
基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解.
四、教学过程设计
(一)引言
前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.
问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?
两个直角三角形满足的`条件
全等依据
方法1
两条直角边分别相等
“SAS”
方法2
一个锐角和一条直角边分别相等
“ASA”或“AAS”
方法3
一个锐角和斜边分别相等
“AAS”
追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?
师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.
【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.
(二)探索新知
问题2:探究5
任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?
画法:
(1)画∠MC′N=90°;
(2)在射线C′M上截取B′C′=BC;
(3)以点B′为圆心,AB为半径画弧,交C′N于点A′;
(4)连接A′B′.
追问:作图的结果反映了什么规律?
你能用文字语言和符号语言概括吗?
文字语言: 斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)
五、小结反思
教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:
1.这节课我们学习了哪个判定直角三角形全等的方法?
2.判定两个直角三角形全等总共有哪些方法?
师生活动:教师引导,学生小结.
【设计意图】回顾两个直角三角形全等的几种判定方法,形成知识体系.
六、布置作业:
教科书习题12.2第7、8题.
文档为doc格式